首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3194篇
  免费   706篇
  国内免费   1960篇
  2024年   3篇
  2023年   220篇
  2022年   203篇
  2021年   314篇
  2020年   312篇
  2019年   351篇
  2018年   258篇
  2017年   267篇
  2016年   291篇
  2015年   238篇
  2014年   244篇
  2013年   239篇
  2012年   212篇
  2011年   210篇
  2010年   200篇
  2009年   249篇
  2008年   206篇
  2007年   269篇
  2006年   226篇
  2005年   200篇
  2004年   164篇
  2003年   143篇
  2002年   127篇
  2001年   121篇
  2000年   93篇
  1999年   72篇
  1998年   84篇
  1997年   36篇
  1996年   63篇
  1995年   33篇
  1994年   26篇
  1993年   24篇
  1992年   41篇
  1991年   22篇
  1990年   26篇
  1989年   14篇
  1988年   5篇
  1987年   5篇
  1986年   5篇
  1985年   10篇
  1984年   4篇
  1983年   1篇
  1982年   6篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1958年   8篇
排序方式: 共有5860条查询结果,搜索用时 46 毫秒
51.
POPULATION ECOLOGY OF SEALS: RETROSPECTIVE and PROSPECTIVE VIEWS   总被引:1,自引:0,他引:1  
This review focuses on population ecology, with critical accounts of past work and future possibilities in age determination, body growth and condition, estimating abundances, mortality rates and lifespans, reproduction, comparative life histories, population dynamics, population modelling and seals in ecosystems. We suggest ways to reduce errors in age determination and to improve methods of obtaining and presenting growth data. Generalized von Bertalanffy growth equations are promoted as a basis for analysing species differences and intra-population variation in body lengths. Indices other than blubber thickness may be better for following body condition. Catch-effort and survival-index methods of estimating abundances have limited applicability, total counts are only locally useful, and sample counts may only be accurate for scattered, ice-breeding species. Some new techniques for population indices are promising. Pre-adult mortality remains difficult to assess. Although not always recognized, adult mortality rates do increase with age, as well described by Gompertz functions. Existing estimates of lifespans are unreliable, and a new approach is outlined. There are methodological problems in estimating ages of maturity. Corpora albicantia should not be used for back-extrapolation, and more study is needed of use of teeth annuli as indicators of maturity. Age-specific proportions of females parous based on reproductive tracts may disagree with proportions recruited in breeding groups, suggesting that the former may often be in error. Allometric relationships among body sizes and life-history variables need more reliable data, especially since the residuals of such relationships are of greatest interest. Brain size may be a better scalar. Direct evidence of density dependence in population growth of seals is sparse. Early survival has been more widely shown to be density-dependent, but only among polygynous species where crowding on land may be a byproduct of sexual selection; there is as yet no good evidence of trophic restraints. Evidence of density dependence of ages of maturity is generally unconvincing. Predation, especially by sharks, may be critical in some species. Characteristics of equilibrium populations might profitably be sought in mass remains in middens and historic kill sites. More attention should be paid to the search for density-independent influences. Supposed impacts of fisheries and pollutions are not wholly convincing. Natural epidemics may keep some populations below resource or space saturation, and some high-latitude species may show large year-to-year variations in recruitment and abundances. Evidence for such density-independent effects should be sought in residuals of growth curves and in teeth layers. Although surplus yield and production/biomass models have been tried, realistic pinniped models must be completely age-structured and time-dependent. Simple models have questionably assumed stationarity to derive life-history parameters. The best available estimates of density dependence of such parameters give no resolution when extrapolated toward equilibrium, and only limited efforts have been made to introduce stochasticity. Better data, not improved model structures, are needed for better understanding. Recent work has contradicted the assumed voraciousness of seals, but their system impacts and dependencies are not well understood. Extended Lotka-Volterra equations used to model Antarctic food webs, including seals, are merely heuristic. Fixed seal biomasses enter as top-down, driving functions in a Bering Sea model, which accordingly cannot be used to analyse or manage their populations. Some Soviet models are tantalizing but ill-specified. The introduction of harbor seals in well-chosen lakes might give mote insights into system roles than would more elaborate modelling. We wonder if pinniped ecology is well served by too many enthusiasts operating under too many restraints.  相似文献   
52.
53.
Pest management is expensive and there is often uncertainty about the benefits for the resources being protected. There can also be unintended consequences for other parts of the ecosystem, especially in complex food webs. In making decisions managers generally have to rely on qualitative information collected in a piecemeal fashion. A method to assist decision making is a qualitative modelling approach using fuzzy cognitive maps, a directed graphical model related to neural networks that can take account of interactions between pests and conservation assets in complex food webs. Using all available information on relationships between native and exotic resources and consumers, we generated hypotheses about potential consequences of single‐species and multi‐species pest control on the long‐term equilibrium abundances of other biotic components of an ecosystem. We applied the model to a dryland ecosystem in New Zealand because we had good information on its trophic structure, but the information on the strength of species interactions was imprecise. Our model suggested that pest control is unlikely to significantly boost native invertebrates and lizards in this ecosystem, suggesting that other forms of management may be required for these groups. Most of the pest control regimes tested resulted in greater abundances of at least one other pest species, which could potentially lead to other management problems. Some of the predictions were unexpected, such as more birds resulting from possum and mouse control. We also modelled the effects of an increase in invasive rabbits, which led to unexpected declines of stoats, weasels, mice and possums. These unexpected outcomes resulted from complex indirect pathways in the food web. Fuzzy cognitive maps allow rapid construction of prototype models of complex food webs using a wide range of data and expert opinion. Their utility lies in providing direction for future monitoring efforts and generating hypotheses that can be tested with field experiments.  相似文献   
54.
《植物生态学报》2015,39(9):932
The concept of ecological thresholds was raised in the 1970s. However, it was subsequently given different definitions and interpretations depending on research fields or disciplines. For most scientists, ecological thresholds refer to the points or zones that link abrupt changes between alternative stable states of an ecosystem. The measurement and quantification of ecological thresholds have great theoretical and practical significance in ecological research for clarifying the structure and function of ecosystems, for planning sustainable development modes, and for delimiting ecological red lines in managing the ecosystems of a region. By reviewing the existing concepts and classifications of ecological thresholds, we propose a new concept and definition at two different levels: the ecological threshold points, i.e. the turning points of quantitative changes to qualitative changes, which can be considered as ecological red lines; the ecological threshold zones, i.e. the regime shifts of the quantitative changes among different stable states, which can be considered as the yellow and/or orange warning boundaries of the gradual ecological changes. The yellow thresholds mean that an ecosystem can return to a stable state by its self-adjustment, the orange thresholds indicate that the ecosystem will stay in the equilibrium state after interference factors being removed, whereas the red thresholds, as the critical threshold points, indicate that the ecosystem will undergo irreversible degradation or even collapse beyond those points. We also summarizes two types of popular Methods in determining ecological thresholds: statistical analysis and modeling based on data of field observations. The applications of ecological thresholds in ecosystem service, biodiversity conservation and ecosystem management research are also reviewed. Future research on ecological thresholds should focus on the following aspects: (1) methodological development for measurement and quantification of ecological thresholds; (2) emphasizing the scaling effect of ecological thresholds and establishment of national-scale observation system and network; and (3) implementation of ecological thresholds as early warning tools in ecosystem management and delimiting ecological red lines.  相似文献   
55.
Three case studies spanning tropical, subtropical and temperate environments highlight the minimum potential benefits of investing in repair of coastal seascapes. Fisheries, a market benefit indicator readily understood by a range of stakeholders from policymakers to community advocates, were used as a surrogate for ecosystem services generated through seascape habitat restoration. For each case study, while recognising that biological information will always remain imperfect, the prospects for seascape repair are compelling.  相似文献   
56.
57.
Theory predicts that consumers may stabilise or destabilise plant production depending on model assumptions, and tests in aquatic food webs suggest that trophic interactions are stabilising. We quantified the effects of trophic interactions on temporal variability (standard deviation) and temporal stability (mean/standard deviation) of grassland biomass production and the plant diversity–stability relationship by experimentally removing heterotrophs (large vertebrates, arthropods, foliar and soil fungi) from naturally and experimentally assembled grasslands of varying diversity. In both grassland types, trophic interactions proportionately decreased plant community biomass mean and variability over the course of 6 years, leading to no net change in temporal stability or the plant diversity–stability relationship. Heterotrophs also mediated plant coexistence; their removal reduced diversity in naturally assembled grasslands. Thus, herbivores and fungi reduce biomass production, concurrently reducing the temporal variability of energy and material fluxes. Because of this coupling, grassland stability is robust to large food web perturbations.  相似文献   
58.
Functional redundancy can increase the resilience of ecosystem processes by providing insurance against species loss and the effects of abundance fluctuations. However, due to the difficulty of assessing individual species’ contributions and the lack of a metric allowing for a quantification of redundancy within communities, few attempts have been made to estimate redundancy for individual ecosystem processes. We present a new method linking interaction metrics with metabolic theory that allows for a quantification of redundancy at the level of ecosystem processes. Using this approach, redundancy in the predation on aphids and other prey by natural enemies across a landscape heterogeneity gradient was estimated. Functional redundancy of predators was high in heterogeneous landscapes, low in homogeneous landscapes and scaled with predator specialisation. Our approach allows quantifying functional redundancy within communities and can be used to assess the role of functional redundancy across a wide variety of ecosystem processes and environmental factors.  相似文献   
59.
The mechanisms underpinning forest biodiversity‐ecosystem function relationships remain unresolved. Yet, in heterogeneous forests, ecosystem function of different strata could be associated with traits or evolutionary relationships differently. Here, we integrate phylogenies and traits to evaluate the effects of elevational diversity on above‐ground biomass across forest strata and spatial scales. Community‐weighted means of height and leaf phosphorous concentration and functional diversity in specific leaf area exhibited positive correlations with tree biomass, suggesting that both positive selection effects and complementarity occur. However, high shrub biomass is associated with greater dissimilarity in seed mass and multidimensional trait space, while species richness or phylogenetic diversity is the most important predictor for herbaceous biomass, indicating that species complementarity is especially important for understory function. The strength of diversity‐biomass relationships increases at larger spatial scales. We conclude that strata‐ and scale‐ dependent assessments of community structure and function are needed to fully understand how biodiversity influences ecosystem function.  相似文献   
60.
Material and energy flows among ecosystems can directly and indirectly drive ecosystem functions. Yet, how populations of consumers respond to allochthonous inputs at a macroecological scale is still unclear. Using a meta‐analysis spanning several biomes, we show that the abundance of recipient populations is 36–57% larger with increased allochthonous inputs. The strength of direct effects on the recipients of these inputs as well as the indirect effects on the consumers of these recipients (i.e. ascending indirect effects) are constant across a latitudinal gradient spanning subtropical, arid, temperate, boreal and arctic ecosystems. However, indirect effect on the in situ resources of the input recipient (i.e. descending indirect effects) decreases with latitude. Our results suggest that the influence of allochthonous inputs can vary across large‐scale gradients of ecosystem productivity and may be driven by the types of trophic interactions within recipient food webs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号